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GROWTH OF A BUBBLE AT A HEATED SURFACE 
IN A POOL OF LIQUID METAL 

S, C. BANKOFF and H. K, CHOI 
Chemical Engineering Department, Northwestern university, Evanston, Illinois, U.S.A. 

(Receiaed 9 September 1974 atzd in raked form 13 February 197.5) 

Abstract-A theoretical investigation of the initial vapor bubble growth from a heated surface wall in a 
pool of liquid sodium is reported. The analysis assumes the bubble to have the shape of a spherical 
sector, at the base of which a thin liquid microlayer is retained on the heating surface. The effects of 
time-and-space dependent heat conduction in the solid, microlayer vaporization, and non-equilibrium 
condensation on the bubble upper surface are considered. A two-term expression for the bubble growth 
rate is obtained by a collocation procedure. Calculated results predict the growth of the bubble on a 
heated surface as a function of the heat flux, the external pressure and the thermophysical properties 
of the liquid and solid. An expression due to Ruckenstein, modified to take into account the effective 
contact angle, is used to determine the departure bubble diameter. This turns out to be sensitive to the 
contact angle, and less strongly influenced by the bubble drag coefficient. The growth is initially inertia- 
controlled, but heat-transfer effects become significant before departure. In this pressure range (0. l-l atm) 
the presence of inert gas, by reducing the effective accommodation coefficient for condensation, increases 

bubble growth rate moderately. 

constant, equation (3); 
constants, equation (28); 
constants, equation (31); 
drag coefficient; 
specific heat; 
departure diameter; 
acceleration due to gravity; 
latent heat of vaporization; 
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molecular weight; 
pressure; 
radial average wall heat flux; 
steady-state wall-heat Aux; 
condensing heat flux; 
bubble radius; 
gas constant; 
radial distance; 
time; 
temperature; 
bubble rise velocity. 

Greek symbols 

E, thermal diffus~vity: 

6, boundary layer thickness; 
&, accommodation coefficient; 

P% density; 
0, surface tension; 

z, delay time, equation (26); 
0, contact angle. 

Subscripts 

f, Iiquid ; 
CA gas; 
s, saturation; 
22, vapor; 
W, wall. 

1. INTRODUCTION 

BUBBLE growth in the alkali liquid metals, such as 
sodium at pressures near atmospheric, tends to be 
inertia-controlled, in view of the low vapor density and 
high thermal conductivity of the liquid, together with 
the relatively large superheats. The present work deals 
with the growth of a vapor bubble in a pool of liquid 
metal initially at saturation temperature in contact with 
a heated solid surface. We do not consider here the 
details of the nucleation process, and neglect the heating 
of the liquid prior to the formation of a bubble. On 
the other hand, the formation is realistic for liquid- 
metal pool baiting in that inertial effects, microlayer 
vaporization, polar condensation, non-equilibrium 
vaporization, and the thermal properties of the solid 
surface are all taken into account. 

2. PREVIOUS WORK 

The equation of motion of a spherically symmetric 
flow field surrounding a growing vapor bubble is given 

by the Rayleigh [l] equation: 

where the viscous and surface tension terms have been 
neglected. If it is further assumed that the pressure 
within the bubble is constant, and the initial radius is 
zero, the solution is of the form 

R = Ar. (2) 

On substitution into equation (I), one obtains 

AZ _ w”- P,) --. 
m (3) 
3Pf 

Suppose that the liquid is initially uniformly super- 
heated to a temperature, Fw. Then, if the bubble wall 
tem~rature, T6, is constant and equal to T,, impIying 
negligible cooling due to vaporization, and if the 
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pressure within the bubble is equal to the equilibrium 
vapor pressure at the wall temperature, an approximate 
expression for the proportionality constant is given by 
applying the differential form of the Clausius- 
Clapeyron equation : 

AT = T;,-T,. 
(4) 

At large times, however, the cooling effect will be sig- 
nificant, and wit1 eventually control the bubble growth. 

Cooper [2] and Cooper and Lloyd [3] demonstrated 
that at low pressures the liquid microlayer between the 
solid surface and the growing bubble could be a sig- 
nificant factor in bubble growth on a heated surface. 
Sernas and Hooper [4] showed, by means of streak 
photographs of rapid bubble growth, that the bubble 
has a hem~pherical shape in its early growth. Deane 
and Rohsenow [5] assumed that the principal source 
of vapor for liquid metal bubble growth is the liquid 
microlayer, and estimated that only about 10 per cent 
of the microlayer is vaporized during the bubble life 
on the wall. They constructed a model for the mech- 
anism of nucleate boiling of a liquid metal on a solid 
heating surface by considering the effect of microlayer 
evaporation, bubble departure and temperature re- 
covery time as a periodic process. The departure radius 
and time were calculated by means of a bubble de- 
parture criterion for nonmetallic liquids, equation [S], 
together with the numerical solution of Wichner and 
Hoffman [6] of the equations for rapid growth of an 
isolated bubble in a superheated liquid. This corre- 
lation, recommended by Cole and by Rohsenow [7,8] 
for the bubble departure diameter in water, was 

Theofanous et al. [9] obtained numerical solutions 
for rapid bubble growth in a pool of uniformly- 
superheated liquid, taking into account the effects of 
surface tension, liquid inertia, heat conduction in the 
liquid and non-equilibrium effects at the liquid-vapor 
interface. 

Bobrovich et ul. [IO] (as reported in Subbotin et al. 
[ll]) obtained experimental data on the departure 
diameter of fast-growing vapor bubbles in water, ethyl 
alcohol, benzene and potassium boiling at subatmos- 
pheric pressures. The potassium data can be closely 
represented by a simplifi~ balance in which surface 
tension forces have been omitted, 

D2 
Dd=-. (6) 

9 

Roll and Myers [ 121 likewise omitted surface effects 
in their force balance, obtaining 

7t5d3 
-.c g(P/-Ps) - 

CBn5dZp,u; 
8 

-?$+&dd”:= 0 (7) 

where buoyancy, drag, and acceleration forces are 
represented, and ub = dDJdt is the translational vel- 
ocity of the spherical bubbIe. 

Ruckenstein [13] obtained a similar expression for 
the departure diameter by considering only the 
buoyancy and drag forces : 

nDd3dPf - P 1 zD: ’ ~_._.__ 
6 

-2.. = c.yp~ 6% 
L 

where again ub = d5,jdt. We now consider extensions 
when the bubble does not grow at zero contact angle. 

If the bubble shape at departure is hemispherical, 
the departure diameter becomes 

or 

C&j-$gR,, = 0. (101 

More generally, if the bubble shape at departure is 
a spherical segment with contact angle, 0, the departure 
criterion will be 

Rj( 1 + cos e)2 = C,zR,2pf --- --- (t t ) 

or 

C R2_(2+3cosd-cos38) 
D d 

(l+COS8)2 
gRd = 0. (17-I 

This extension of the Ruckenstein expression is used 
in the present work. 

To our present knowledge, no experimental data on 
bubble growth rates from a heated surface in a liquid- 
metal pool exist, with which to compare the theory in 
this paper since the completion of this work. Dwyer 
et al. [ 15,161 have independently arrived at theoretical 
solutions to a similar problem, involving, however, the 
assumptions that dryout ofthe microlayer occurs quite 
rapidly, and that the liquid surrounding the bubble is 
uniformly superheated at the heating surface tempera- 
ture. The predictions of the two theories can therefore 
not be directly compared. 

3. FORM~LATJON OF THE PROBLEMS 

Consider a growing vapor bubble on a horizontal 
heated surface in a pool of liquid metal which is every- 
where at rest and at the saturation temperature at the 
time bubble starts to grow (Fig. 1). We assume the 
bubble to be a spherical segment with a constant 
contact angle over time intervals of interest and the flow 
field to be purely radial. This implies the neglect of 
bubble distortion close to the wall due to motion of 
bubble center away from wall, and of distortion of the 
flow field due to the zero velocity of the solid surface. 
It is further assumed that a liquid microlayer separates 
the vapor at the base of the bubble from the solid, 
which offers negligible thermal resistance, remains 
intact and stationary during the bubble lifetime, and 
furnishes essentially all ofthe vapor entering the bubble. 
This neglects vaporization from liquid surrounding the 
bubble, which is expected to be small compared to 
microlayer vaporization. As the bubble grows, fresh 
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of inert gas. If inert gas is present in any substantial 
amount, the accommodation coefficient, E, will be much 
less than one, with a corresponding reduction in bubble 
wall condensation. Since this effect is not appreciable 
for evaporation, this would imply that bubble growth 
in the presence of inert gases may be substantially faster 
than in their absence. In the absence of such effects, a 
reasonable approximation over the entire range is then: 

Llpuid 

FIG. l(a). Geometry of bubble growth. 

“/ 

Fro. l(b). Heat-transfer resistance through the microlayer. 

microlayer is uncovered continuously, and a thermal 
boundary layer builds up in the solid surface below 
the microlayer. Inserting now the Clausius-Clapeyron 
equation into equation(l), one obtains an approximate 
relationship between the vapor superheat and the 
bubble motion: 

(13) 

where the vapor temperature will generally he between 
the wail temperature, F,, and the saturation tem- 
perature, T,. 

As the bubble grows, vapor is generated by evap- 
oration of the liquid microlayer remaining next to the 
solid surface. We assume that the thermal resistance 
of the microlayer is negligible, in view of its large 
thermal conductivity and small thickness. A uniform 
temperature gradient in the wall is postulated initially. 
The thickness ofthe thermal boundary layer in the solid 
under the bubble willdepend upon the time of exposure 
of the surface element to vapor, and hence is a function 
of radial position as well as time. The temperature 
driving force across this boundary layer of thickness 
6,(r, t), is then: 

It is now assumed that the evaporation of vapor 
into the bubble occurs entirely from the microlayer at 
the base of the bubble, while condensation of the vapor 
occurs continuously at the bubble surface. The con- 
densing heat flux is assumed to be uniform, since the 
bulk liquid temperature and vapor temperature are 
uniform at every instant. The resistance to heat flow 
consists principally of a thin thermal boundary layer 
in a liquid in series with an interfacial resistance to 
molecular condensation. Assuming that the heat fIow 
is continuous through the liquid-vapor interface, one 
obtains 

k HI 

The instantaneous local heat flux is 

Hence 

With the assumption of a unifo~ vapor temperature 
the heat flux across the gas-liquid interface becomes 

Upon eliminating the bubble wall temperature, ?& 
one obtains 

where the second term in the denominator very quickly 
becomes largecompared to the first term in the absence 

To determine the local heat flux from the wall into 
the bubble, we assume that the heat flux and the wall 
temperature are both position- and time-dependent: 

Y = y(r, r) 
7;, = T,(r, I). 

(17) 

Initially, the heat flow and the wall temperature are 
assumed to be steady-state values : 

where E is the accommodation coefficient. It is possible 
to eliminate T, from equations (20) and (22), and with 
the assumption that the interfacial resistance is small 
compared to the thermal boundary layer resistance 

for E = 1, one obtains approximately 

(24) 
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The thermd boundary-layer thickness is a function of 
both time and position and it may be written in the 
parametric form : 

is,&, I) = 2 j(a,(t -z>) WI 

where z is the time at which the surface at position Y 
came into contact with the vapor. One can eliminate 
the radial dependence by defining 4 : 

dfdj. (27) 

Appro~imat~ag the bubble radius by the two-term 
~xpr~ssi~~~ 

R = iYQf+azrZ 081 

where at and a2 are constants to be determined, the 
initial condition, R(0) = 0, is satisfied. 

Now letting r’ = s/t and substituting equation (28) 
into (27), one gets 

k,(T,- X,)1 

integrating and r~~ranging equation (29), one obtains 

Substituting equation (28) into (13), we have 

K = ho+b,t+b,r2 

Since the surface area of the Bobbie 

= ZnR’{J i cos N), 
the base area 

= 7rR2 sin2 0 1 

and the volume of the bubble 

= z$(2+3cosO-cor3B). 

(31) 

f32) 

(33) 

(34) 

a simple heat balance requires that 

~(~R~s~nz~) = g,27&(1 +cos@) 

+p,brf~(2+3cosO-cos~Bf~nR2. f35) 

Upon substituting equations (16), (29) and @it) into (35) 
and rearranging, we findy have 

Jn view of the approximation impIied by equation 
128), equation (36) cannot be sati&ed at ali times. we 
therefore choose ffti i+ such that it is satisfied at two 
~haracter~st~~ times, rc, and &./2. W-e identify t, with the 
estimate of the bubble departure time given by Deane 
and Rohsenow [5]. Because of the considerable differ- 
ence in assumptions, we cannot expect that I, will be 
very close to the departure time for the bubbles con- 
sidered in this work. 

To calculate r,>. the experimental relation by 
Suhbotin ef a!. (IO] for stabfe boiling of sodium, in 
the absence oF argon, on stainless steei, nickel, 
chromium, or copper at pressures between about 0.1 
and I atm was used : 

;s,- & = 4tjt,3 133 

where @ is the time-average heat flux, in kcai/m2/h. 
The modified Ruckenstein criterion, equation (lo), 

was used to determine departure time and radius. 

4. RESULTS 

Sodium bubble radius-time curves for various con- 
tact angles with t, = QOO3s, AT = 10.4”C and j = 0 
(uniform initial solid temperature} are shown in Figs. 
2 and 3 for e = I.0 and O-1316atm. The departure 
fines give the Ioci of departure points for two drag 
coeiEcients, CD = O-5 and J-O. At the higher pressure 
the growth curves deviate a~~re~iabJy from straight 
lines befor~d~pa~ture, indicating that the heat diffusion 
terms are significant, while the drag coefficient does 
not strongly affect the departure radius. At the lower 
pressure, bubble growth is considerably more rapid in 
view ofthe reduced vapor density, giving rise to inertia- 
controlled growth and departure. These figures show 
a strong dependence on contact angle, with very slow 
growth for contact angles befow 30”. One should reafize 
that the eflective contact angfe, as determined by the 
ratio of bubble height to base diameter, may be con- 
siderably larger than the equiI~brium contact angle for 
these ffatten~d bubbles. The assumption that alt of the 
vapor is generated at the bubbie base is probably 
acceptable for the fast-growing bubbles, but tends to 
break down for slower growth rates. These calculations 
show an equilibrium bubble configuration at 0 _ IO- 
15”, where microlayer evaporation is balanced by 
surface condensation, but this neglects heat conduction 
from the solid wall to the liquid surrounding the bubble. 

SurprisingIy, the eaicutated bubbIe growth rate is 
not very sensitive to the de&ifs of the initial wall tem- 
perature distribution. This can be seen from Fig. 4, 
where the initial waft temperature has been nearty 
doubled compared to the assumed waJ1 tem~eratnre in 
Fig. 2. Similady, a non-isothermal wall, corresponding 
to an initial steady flux of 2 x 10’ kcal~mz~h, shows a 
small increase in bubble growth rate (Fig. 5). This 
implies that, although the microlayer vaporization rate 
is somewhat increased by the higher temperature 
driving force, the vapor temperature and condensation 
rate also increase, leading to a partial cancellation of 
effects. A much more significant variable is the bubble 
shape, since this determines the rate at which new 
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0 2 4 6 6 

Time, t x IO’, 5 

FIG. 2. Bubble radius vs time at various contact 
angles and bubble departure points for CD = 0.5 

and I at P, = 1 atm, AT = 10,44”K, ?j = 0. 

Departure line 

---_t, :0.5 

----to ;,.O 

Time, t x10’. s 

FIG. 3. Bubble radius vs time at various contact 
angles and bubble departure points for Cr, = 0.5 
and 1 at P, = 0,1316atm, AT = lO.WK, 4 = 0. 

microlayer liquid is exposed, from which the bulk of 
the vapor arises. The vapor temperature is, in fact, a 

weak function of time [ 141, and is essentially constant 
for inertia-controlled growth. The vapor superheat is 
5°C or less, which is to be expected, since the con- 

densation area is always at least twice the bubble base 
area. 

Figures 6 and 7 show that the accommodation co- 
efficient, E, has only a minor effect under these con- 
ditions, indicating that the condensing flux, qc is 
relatively small. A comparison is also shown with the 
growth rate at a high superheat (AT = 151.5”K) calcu- 
lated by Theofanous et al. [9] for an isolated sodium 
bubble in a pool of uniformly-superheated liquid. As 

c P, = I atm 

12 AT = 19B4”K 

g=o 

w / / / Departure lone 

--c,=o5 
/ 

4-x A --c =I0 

0 2 4 6 6 I( ? 

Time. t x103, s 

FIG. 4. Bubble radius vs time at various contact 
angles and bubble departure points for CD = 0.5 

and 1 at P, = 1 atm, AT = 19,84”K, 4 = 0. 
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FIG. 5. Bubble radius vs time at various contact 
angles and bubble departure points for CD = 0.5 
and 1 at P, = 1 atm, AT = lO.WK, q = 2 x 10’ 

kcal/m’/h. 

expected, this growth rate is somewhat larger than for 

a bubble attached to a wall at the same initial super- 

heat, but with no superheating of the liquid next to 
the wall. 

5. DISCUSSION 

It is seen that the calculated departure time, td, varies 
considerably with contact angle, pressure and heat Rux 
and is, in general, different from that calculated by 
Deane and Rohsenow [S], t,. The models have im- 
portant differences, however, in the departure criterion, 
the assumed heat transfer coefficient from the micro- 
layer, the initial surface wall superheat and the initial 
temperature distribution in the solid. We therefore used 
t, only a characteristic time at which to satisfy the 
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O-90” 
F: = latm fll 

I 

AT=1044"K 
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Time, t x10”. s 

FIG. 6. Bubble growth for different accommodation 
coefficients at P, = 1 atm, 0 = 90”, q = 0. 

0 I 2 3 4 

Tlme.txlO? s 

FIG. 7. Comparison of present theory with Theofanous 
et al. [9] calculations for spherical bubble at 1 atm, 

AT = 151,5”K, 0 = 90”. 

approximate equation (36) exactly. In addition, the 

growth curves satisfy this equation exactly at t,/2, and 
the initial condition at t = 0. Since the curvature is 

everywhere small, this collocation procedure results in 
a small error at every point. It has been shown that the 
growth curves are quite insensitive, even for t < 3t,, 
to the choice of the interior collocation point. The 
quadratic term in equation (28) is small for these fast- 
growing bubbles, and represents a deviation from 
linearity for the short times prior to departure. At still 
higher pressures, this term would become quite im- 
portant. We have assumed one-dimensional flow under 
the bubble, which seems reasonable in view of the short 
contact times. A more serious assumption is implied 
in the neglect of liquid superheat prior to bubble 
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growth. These results may be somewhat low, therefore, 
although the comparison with the results of Theofanous 
et al. [9] indicates that this correction should be small. 

The general conclusions from this work point to the 
predominant effects of the liquid microlayer and of the 

flattening of the bubble in determining bubble growth 

rates and departure times in liquid-metal pool boiling. 

The vapor superheat is only a few degrees, so that the 
condensation heat flux effects are relatively minor in the 

heat tlux and pressure range tested. For the same 

reason, the effects of inert gas, as shown by the effective 
accommodation coefficient. are not here very im- 
portant, although they would be expected to be very 
significant at still lower pressures. 
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CROISSANCE D’UNE BULLE SUR LA PAR01 CHAUDE 
D’UN RESERVOIR PLEIN DE METAL LIQUIDE 

93 

R&sum&On prksente une Ctude theorique du dCveloppement d'une bulle de vapeur sur une paroi 

chauff&ed'un rtservoirde sodiumliquide.L'analyse suppose quelabullealaforme d'un secteur sphitrique 
B la base duquel un film liquide tris fin est retenu sur la surface chauffante. On a consid&& les effets 
de la conduction thermique variable dans l’espace et dam le temps a l’intkrieur du solide de la vaporisation 
du film liquide, et de la condensation en non-kquilibre h la surface supkrieure de la bulle. Une expression 
a deux termes est obtenue pour la vitesse de croissance de la bulle par une mkthode de collocation. 
Les risultats calcul& permettent de prkvoir le d&veloppement de la bulle sur la surface chauffke en 
fonction du flux thermique, de la pression extirieure et des proprittCs thermophysiques du liquide et 
du solide. On utilise une expression dQe h Ruckenstein, modifite afin de tenir compte de I’angle de contact 
effectif, pour dkterminer le diamttre de la bulle correspondant h son dCcrochement. Cette valeur se trouve 
&tre surtout sensible g I’angle de contact et moins fortement influencke par le coefficient de train&e de 
la bulle. La formation est d’abord controlCe par les effets d’inertie, mais les effets de transfert thermique 
deviennent importants avant le dtcrochage. Dans ce domaine de pression (0,1-l atm) la presence de gaz 
inertes, en rttduisant le coefficient effectif d’accommodation pour la condensation, augmente modtriment 

la vitesse de d&eloppement de la bulle. 

DAS ANWACHSEN EINER BLASE AN DER HEIZFLb;CHE EINES 
MIT FLijSSIGMETALL GEFiiLLTEN BEHALTERS 

Zusammenfassung-In einer theoretischen Untersuchung wird iiber den Beginn des Blasenwachsens an 
einer beheizten Wand eines mit fliissigem Natrium gefiillten Behiilters berichtet. Die Analyse geht aus 
voneiner Dampfblase von der Form eines Kugelsektors, an dessen Basis eine diinne, fliissige Mikroschicht 
an der Heizfliche haftet. Die Einfliisse der zeit- und ortsabhsngigen Wgrmeleitung in der Heizwand, 
die Mikroschichtverdampfung und die Kondensation an der BlasenoberflIche werden beriicksichtigt. 
Dabei ergibt sich ein zweigliedriger Ausdruck fiir die Blasenwachstumsgeschwindigkeit. Das Blasen- 
wachstum erweist sich abhPngig vom WGrmestrom. vom Cul3eren Druck, von den physikalischen 
Eigenschaften der Fliissigkeit und der Heizfllche. Zur Bestimmung des Blasen-abreiBdurchmessers wird 
ein modifizierter Ausdruck von Ruckenstein herangezogen, der den wirksamen Kontaktwinkel einbezieht. 
Dieser Ausdruck erweist sich als abhlngig vom Kontaktwinkel und weniger abhlngig vom Blasennachlauf- 
Koeffizienten. Das Wachstum ist anftinglich tragheitsbestimmt, erst vor dem Abrei&n werden Wkrme- 
iibergangseinfliisse wirksam. Im untersuchten Druckbereich (0,l bis 1 bar) werden die Blasenwachstums- 
geschwindigkeiten bei Anwesenheit von Inertgas etwas erhiiht, da die effektiven Akkomodations- 

koeffizienten fiir Kondensation reduziert werden. 

POCT IIY3blPbKA HA HAI-PETOii IIOBEPXHOCTM nPM KMI-IEHMM 
)KKMfiKOI-0 METAJIJIA B 60JIbUlOM 06-bEME 

Amtoramm - OnncblBaeTcn TeopeTwecKoe wcnenoBaHHe HaYanbHoro pocTa ny3brpbKa napa c 
HarpeTOk nOBepXHOCTIl CTeHKU npH KRneHHH HaTpLia B 6onbmOM o6aeMe. nJJeAnOnaraeTCS, 9TO 
ny3blpeK WMeeT +OpMy yYaCTKa C+epbI, y OCHOBaHHfl KOTOpOi? Ha HarpeTOii nOBepXHpCTB COXpa- 
HReTCaTOHKRti MHKpOCnOti XWAKOCTA.PaCCMaTpHaaloTCR 3~&KTblTenJlOnpOBOAHOCTA,3aBRCnlue~ 
OT BwMeHH H npOCTpaHCTBa,B TBepAOM Tene,HCnapeHlla MBKpOCJIOSI XWAKOCTII H HepaBHOBeCHOfi 
KoHAeHcaqaH Ha BepxHeii noBepxHocra ny3blpbKa. MeTOAoM KonnoKaumi nonyseH0 AByxrneHHoe 

BbIpaXCeHLie AJIRCKOPOCTH pOCTa ny3blpbKa. PaC'ieTHble AaHHble npeACKa3bIBaKIoT pOCT ny3blpbKa Ha 
HarpeToFi noeepxHocTH B 3aBHcAh4ocTH OT TennoBoro noToKa, BHewiero naBnewa H Tenno@3H- 
YecKnx CBOBCTB )KMAKOCTH A Tsepnoro Tena. Ana onpenenewa AaaMeTpa 0TpbIBa ny3bIpbKa 
HCnOnb3yeTCSI BbIpameHrte n0 PyKeHLWetiHy, MOAH@HUHpOBaHHOe AJIR y'teTa 3++eKTHBHOrO yrna 
KOHTaKTa. OKa3bIBaeZ?, ‘iT0 ARaMeTp OTpblaa ny3blpbKa CHJlbHO 3aBUCAT OT yrna KOHTaKTa Ii 
MeHee CWlbHO, OT K03$N&iUUeHTa TOpMO~eHWl ny3blpbKa. Rtiaqane POCT ny3bIpbKa pet-ynWpyerCR 
UHep~rtOHHbIMACHAaMI1,HOAOerOOTpblBaHaY~Ha~TCKa3blBaTbC~3~~eKTbl -feWlOO6MeHa.B 3TOM 
AAana30He AaBneHtiii(O,l-1 aTM) Hanwuie HHepTHoro ra.38 HecKonbKo noBbnuaeT cKopocrb pocTa 
Ily3blpbKa 38 CYeT yMeHblIIeHW7 3+$eKTHBHOrO KO3C@jNiUHeHTa BKKOMOABUUH npLi KOHAeHCaUHU. 


