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Abstract—A theoretical investigation of the initial vapor bubble growth from a heated surface wall in a
pool of liquid sodium is reported. The analysis assumes the bubble to have the shape of a spherical
sector, at the base of which a thin liquid microlayer is retained on the heating surface. The effects of
time-and-space dependent heat conduction in the solid, microlayer vaporization, and non-equilibrium
condensation on the bubble upper surface are considered. A two-term expression for the bubble growth
rate is obtained by a collocation procedure. Calculated results predict the growth of the bubble on a
heated surface as a function of the heat flux, the external pressure and the thermophysical properties
of the liquid and solid. An expression due to Ruckenstein, modified to take into account the effective
contact angle, is used to determine the departure bubble diameter. This turns out to be sensitive to the
contact angle, and less strongly influenced by the bubble drag coefficient. The growth is initially inertia-
controlled, but heat-transfer effects become significant before departure. In this pressure range (0-1-1 atm)
the presence of inert gas, by reducing the effective accommodation coefficient for condensation, increases
bubble growth rate moderately.

NOMENCLATURE
A, constant, equation (3);
ay,a;, constants, equation (28},
bo, b1, by, constants, equation (31);
Ca, drag coefficient;
Cp, specific heat;
Dy, departure diameter;
g, acceleration due to gravity;
hgg, latent heat of vaporization;
k, thermal conductivity;
M, molecular weight;
P, pressure;
q, radial average wall heat flux;
g, steady-state wall-heat flux;
9c» condensing heat flux;
R, bubble radius;
R,, gas constant;
r, radial distance;
t, time;
T, temperature;
Up, bubble rise velocity.
Greek symbols
o, thermal diffusivity;
J, boundary layer thickness;
&, accommodation coefficient;
P, density;
o, surface tension;
T, delay time, equation (26);
0, contact angle.
Subscripts
1, liquid;
g, gas; .
s, saturation;
v, vapor;
w, wall.
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1. INTRODUCTION

BUBBLE growth in the alkali liquid metals, such as
sodium at pressures near atmospheric, tends to be
inertia-controlled, in view of the low vapor density and
high thermal conductivity of the liquid, together with
the relatively large superheats. The present work deals
with the growth of a vapor bubble in a pool of liquid
metal initially at saturation temperature in contact with
a heated solid surface. We do not consider here the
details of the nucleation process, and neglect the heating
of the liquid prior to the formation of a bubble. On
the other hand, the formation is realistic for liquid-
metal pool boiling in that inertial effects, microlayer
vaporization, polar condensation, non-equilibrium
vaporization, and the thermal properties of the solid
surface are all taken into account.

2. PREVIOUS WORK

The equation of motion of a spherically symmetric
flow field surrounding a growing vapor bubble is given
by the Rayleigh [1] equation:
Pv ~P, s

Pr
where the viscous and surface tension terms have been
neglected. If it is further assumed that the pressure

within the bubble is constant, and the initial radius is
zero, the solution is of the form

RR+3R? = n

R = Ar (2)
On substitution into equation (1), one obtains
2(P,~ P,
A? = w—( ). 3

Suppose that the liquid is initially uniformly super-
heated to a temperature, T,,. Then, if the bubble wall
temperature, T;, is constant and equal to T, implying
negligible cooling due to vaporization, and if the
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pressure within the bubble is equal to the equilibrium
vapor pressure at the wall temperature, an approximate
expression for the proportionality constant is given by
applying the differential form of the Clausius-
Clapeyron equation:

'2pghngT‘>“z
A=
( 3,7,
AT =T,-T.

At large times, however, the cooling effect will be sig-
nificant, and will eventually control the bubble growth.

Cooper [2] and Cooper and Lloyd [3] demonstrated
that at low pressures the liquid microlayer between the
solid surface and the growing bubble could be a sig-
nificant factor in bubble growth on a heated surface.
Sernas and Hooper [4] showed, by means of streak
photographs of rapid bubble growth, that the bubble
has a hemispherical shape in its early growth. Deane
and Rohsenow [5] assumed that the principal source
of vapor for liquid metal bubble growth is the liquid
microlayer, and estimated that only about 10 per cent
of the microlayer is vaporized during the bubble life
on the wall. They constructed a model for the mech-
anism of nucleate boiling of a liquid metal on a solid
heating surface by considering the effect of microlayer
evaporation, bubble departure and temperature re-
covery time as a periodic process. The departure radius
and time were calculated by means of a bubble de-
parture criterion for nonmetallic liquids, equation [5],
together with the numerical solution of Wichner and
Hoflman [6] of the equations for rapid growth of an
isolated bubble in a superheated liquid. This corre-
lation, recommended by Cole and by Rohsenow [7, 8]
for the bubble departure diameter in water, was

g _ 2\ 12 &} 5/4
(9(Pf Pg)‘%) 15 1044<£!5Pf7§) 5
g p,«;hfg /

Theofanous et al. [9] obtained numerical solutions
for rapid bubble growth in a pool of uniformly-
superheated liquid, taking into account the effects of
surface tension, liquid inertia, heat conduction in the
liquid and non-equilibrium effects at the liquid—vapor
interface.

Bobrovich et al. [10] (as reported in Subbotin et al.
[11]) obtained experimental data on the departure
diameter of fast-growing vapor bubbles in water, ethyl
alcohol, benzene and potassium boiling at subatmos-
pheric pressures. The potassium data can be closely
represented by a simplified balance in which surface
tension forces have been omitted.

DZ
=
Roll and Myers [12] likewise omitted surface effects

in their force balance, obtaining

7D} CpnDipuj
9P —

(4

Dy (6)

nDips o, duy
a0 (7
2 (") & ]
where buoyancy, drag, and acceleration forces are
represented, and u, = dD,/dr is the translational vel-

ocity of the spherical bubble.

Ruckenstein {13] obtained a similar expression for
the departure diameter by considering only the
buoyancy and drag forces:

2 2
B =Cp %)i f’f’% (8)
where again u, = dD,/dt. We now consider extensions
when the bubble does not grow at zero contact angle.

If the bubble shape at departure is hemispherical,
the departure diameter becomes

R2
%nRgg(pf"Pg)z CDR'R,%.OJ‘ ”éi {9}

or

CpRi—43gR, = 0. (10)

More generally, if the bubble shape at departure is
a spherical segment with contact angle, 8, the departure
criterion will be

R3
IIT" (24 3cos@—cos* Dglp;—p,)

RE(1+cos 6)?
= Cangpf —i('HBCOS —)“ (11)

F4

or

(243 cos §—cos* 8)
(1 +cos6)?

This extension of the Ruckenstein expression is used
in the present work.

To our present knowledge, no experimental data on
bubble growth rates from a heated surface in a liquid-
metal pool exist, with which to compare the theory in
this paper since the completion of this work. Dwyer
et al. [ 15, 16] have independently arrived at theoretical
solutions to a similar problem, involving, however, the
assumptions that dryout of the microlayer occurs quite
rapidly, and that the liquid surrounding the bubble is
uniformly superheated at the heating surface tempera-
ture. The predictions of the two theories can therefore
not be directly compared.

3. FORMULATION OF THE PROBLEM

Consider a growing vapor bubble on a horizontal
heated surface in a pool of liquid metal which is every-
where at rest and at the saturation temperature at the
time bubble starts to grow (Fig. 1). We assume the
bubble to be a spherical segment with a constant
contact angle over time intervals of interest and the flow
field to be purely radial. This implies the neglect of
bubble distortion close to the wall due to motion of
bubble center away from wall, and of distortion of the
flow field due to the zero velocity of the solid surface.
It is further assumed that a liquid microlayer separates
the vapor at the base of the bubble from the solid,
which offers negligible thermal resistance, remains
intact and stationary during the bubble lifetime, and
furnishes essentially all of the vapor entering the bubble.
This neglects vaporization from liquid surrounding the
bubble, which is expected to be small compared to
microlayer vaporization. As the bubble grows, fresh
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F1G. 1(b). Heat-transfer resistance through the microlayer.

microlayer is uncovered continuously, and a thermal
boundary layer builds up in the solid surface below
the microlayer. Inserting now the Clausius—Clapeyron
equation into equation (1), one obtains an approximate
relationship between the vapor superheat and the
bubble motion:

RR+3R2 = P77 (13)

or L

where the vapor temperature will generally lie between
the wall temperature, T, and the saturation tem-
perature, T,.

It is now assumed that the evaporation of vapor
into the bubble occurs entirely from the microlayer at
the base of the bubble, while condensation of the vapor
occurs continuously at the bubble surface. The con-
densing heat flux is assumed to be uniform, since the
bulk liquid temperature and vapor temperature are
uniform at every instant. The resistance to heat flow
consists principally of a thin thermal boundary layer
in a liquid in series with an interfacial resistance to
molecular condensation. Assuming that the heat flow
is continuous through the liquid—vapor interface, one
obtains

ke
= T,~T,
4 \/(TCGCJ'I’)( b }
[ M h
:e\/(an T)‘—’ET—"’(TU—E,M‘ (14)
g fv s

Upon eliminating the bubble wall temperature, T;,
one obtains

_ L,—-T, (1)
b= T R, T\ NI
gty M ks

where the second term in the denominator very quickly
becomes large compared to the first term in the absence

of inert gas. If inert gas is present in any substantial
amount, the accommodation coefficient, ¢, will be much
less than one, with a corresponding reduction in bubble
wall condensation. Since this effect is not appreciable
for evaporation, this would imply that bubble growth
in the presence of inert gases may be substantially faster
than in their absence. In the absence of such effects, a
reasonable approximation over the entire range is then:

k, TL-T,

NN

(16)

To determine the local heat flux from the wall into
the bubble, we assume that the heat flux and the wall
temperature are both position- and time-dependent:

q=q(r1)

Ty = T,{r. 1). (17

Initially, the heat flow and the wall temperature are
assumed to be steady-state values:

g = g{r,0)
T = T.(r.0).

As the bubble grows, vapor is generated by evap-
oration of the liquid microlayer remaining next to the
solid surface. We assume that the thermal resistance
of the microlayer is negligible, in view of its large
thermal conductivity and small thickness. A uniform
temperature gradient in the wall is postulated initially.
The thickness of the thermal boundary layer in the solid
under the bubble will depend upon the time of exposure
of the surface element to vapor, and hence is a function
of radial position as well as time. The temperature
driving force across this boundary layer of thickness
d,(r, 1), 1s then:

(18)

Ol 1)
AT (r.ty = T,+§ = T,ir, t). (19)

The instantaneous local heat flux is

Ky
1) = e AT, 1), 20
qir. 1) Btr 0 {r.1) (20
Hence

) = §+—— Ty — Tulr, 1)), 1
q(r, 1) q+5w(r’ {)( {r,1)) 21)

With the assumption of a uniform vapor temperature
the heat flux across the gas-liquid interface becomes
I M Py h%y
=& [{ = | T =Ty (22
qlr. ) *\RT) T (T, 0 —-T(0) (22)
where ¢ is the accommodation coefficient. It is possible
to eliminate T, from equations (20) and (22), and with
the assumption that the interfacial resistance is small
compared to the thermal boundary layer resistance

owlr,t) 1 |/2rR, T\ T,
v 1 (2RI T (23)
ky £ M Jphty
for £ = 1, one obtains approximately
)= G+ —— (T, = T.). 24
gir.t) Q+éw(r, t)( ) (24)
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The thermal boundary-layer thickness is a function of
both time and position and it may be written in the
parametric form:

dlr, 1) = 2 /ot —1)) {25)
()
R =500 (26)

where 7 is the time at which the surface at position r
came into contact with the vapor. One can eliminate
the radial dependence by defining §:

O KT L o
4ty = R sir?—éL {q +£‘\—/T(me(£" T)L%d(m‘ - 27

Approximating the bubble radius by the two-term
expression,

R = agt+at? {28)
where ay and a, are constants to be determined, the
initial condition, R(0) = 0, is satisfied.

Now letting ' = t/t and substituting equation (28)
into (27), one gets
sk T.— Tl
d=qg+ RZ \/(d;—):)—

y j‘ {a 1 +a, tlt’z){az{—?@ tr’)dt" )
0 Ja-1)
Integrating and rearranging equation (29), one obtains
G=a+ ke (LT
Ve t) oy + agt)?

x {$at+3a ayt + Hatt?}. (30)
Substituting equation (28) into (13), we have
T, = bo+byt+byt?
1'5p,7;
where by = 2Pt
Paltrg

3D

ai+ T,

Since the surface area of the bubble
= 2nR*{1 + cos 6), (32)
the base area
= nR?sin? 0,
and the volume of the bubble
3

R
= n—3~—(2+3cos #~cos? @),

33)

(34)
a simple heat balance requires that
§rR*sin? ) = g.2aR*(1 +cos )

+ pgh {2+ 3cos 8 —cos® HRnRZ. (35)

Upon substituting equations (16}, (29) and {20} into (35}
and rearranging, we finally have

- kw (TW_T';) 4.2 . 16 64 .2 .2
2
q-)-\/(a D raD a3t +$a 0yt +§5a317)
w 1 2
2k (T, —T) l+cosB)
\/(n:otft') sin?f

h
:’;n 2 (ar +2, 02+ 3eos §—cos* ) = 0. (36)

In view of the approximation implied by equation
{28), equation (36} cannot be satisfied at all times. We
therefore choose a,, @, such that it is satisfied at two
characteristic times, 7,, and #,/2. We identify ¢, with the
estimate of the bubble departure time given by Deane
and Rohsenow [5]. Because of the considetable differ-
ence in assumptions, we cannot expect that 1, will be
very close to the departure time for the bubbles con-
sidered in this work.

To calculate T,, the experimental relation by
Subbotin et al. [10] for stable boiling of sodium, in
the absence of argon, on stainless steel, nickel,
chromium, or copper at pressures between about 01
and fatm was used:

T.~T.=45"" &0
where 4 is the time-average heat flux, in keal/m?/h.

The modified Ruckenstein criterion, equation {10),
was used to determine departure time and radius.

4. RESULTS

Sodium bubble radius-time curves for various con-
tact angles with ¢, = 0-:003s, AT = 104°C and §=0
{uniform initial solid temperature) are shown in Figs.
2 and 3 for P, =10 and (-1316atm. The departure
lines give the loci of departure points for two drag
coefficients, Cp, = 0-5 and 1-0. At the higher pressure
the growth curves deviate appreciably from straight
lines before departure, indicating that the heat diffusion
terms are significant, while the drag coefficient does
not strongly affect the departure radius. At the lower
pressure, bubble growth is considerably more rapid in
view of the reduced vapor density, giving rise to inertia-
controlled growth and departure. These figures show
a strong dependence on contact angle, with very slow
growth for contact angles below 30°. One should realize
that the effective contact angle, as determined by the
ratio of bubble height to base diameter, may be con-
siderably larger than the equilibrium contact angle for
these flattened bubbles. The assumption that all of the
vapor is generated at the bubble base is probably
acceptable for the fast-growing bubbles, but tends to
break down for slower growth rates. These calculations
show an equilibrium bubble configuration at 8 ~ 10—
15°, where microlayer evaporation is balanced by
surface condensation, but this neglects heat conduction
from the solid wall to the liquid surrounding the bubble,

Surprisingly, the calculated bubble growth rate is
not very sensitive to the details of the initial wall tem-
perature distribution. This can be seen from Fig. 4
where the imtial wall temperature has been nearly
doubled compared to the assumed wall temperature in
Fig. 2. Similarly, a non-isothermal wall, corresponding
to an initial steady flux of 2 x 10° kcal/m?/h, shows a
small increase in bubble growth rate (Fig 5). This
implies that, although the microlayer vaporization rate
is somewhat increased by the higher temperature
driving force, the vapor temperature and condensation
rate also increase, leading to a partial cancellation of
effects. A much more significant variable is the bubble
shape, since this determines the rate at which new
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F1G. 2. Bubble radius vs time at various contact
angles and bubble departure points for Cp = 0-5
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F1G. 3. Bubble radius vs time at various contact
angles and bubble departure points for Cp = 0-5
and 1 at P, = 0-1316atm, AT = 10-44°K, g = 0.

microlayer liquid is exposed, from which the bulk of
the vapor arises. The vapor temperature is, in fact, a
weak function of time [ 14], and is essentially constant
for inertia-controlled growth. The vapor superheat is
5°C or less, which is to be expected, since the con-
densation area is always at least twice the bubble base
area.

Figures 6 and 7 show that the accommodation co-
efficient, ¢, has only a minor effect under these con-
ditions, indicating that the condensing flux, g. is
relatively small. A comparison is also shown with the
growth rate at a high superheat (AT = 151-5°K) calcu-
lated by Theofanous et al. [9] for an isolated sodium
bubble in a pool of uniformly-superheated liquid. As
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F1G. 4. Bubble radius vs time at various contact
angles and bubble departure points for Cp = 0-5
and 1 at P, = latm, AT = 19-84°K, g = 0.
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F1G. 5. Bubble radius vs time at various contact

angles and bubble departure points for Cp = 0-5

and 1 at P, = latm, AT = 10-44°K, ¢ = 2 x 10°
kcal/m?/h.

expected, this growth rate is somewhat larger than for
a bubble attached to a wall at the same initial super-
heat, but with no superheating of the liquid next to
the wall.
5. DISCUSSION

It is seen that the calculated departure time, t,, varies
considerably with contact angle, pressure and heat flux
and is, in general, different from that calculated by
Deane and Rohsenow [5], t.. The models have im-
portant differences, however, in the departure criterion,
the assumed heat transfer coefficient from the micro-
layer, the initial surface wall superheat and the initial
temperature distribution in the solid. We therefore used
t. only a characteristic time at which to satisfy the
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FiG. 7. Comparison of present theory with Theofanous
et al. [9] calculations for spherical bubble at 1atm,
AT = 151-5°K, 0 = 90°.

approximate equation (36) exactly. In addition, the
growth curves satisfy this equation exactly at ¢./2, and
the initial condition at t = 0. Since the curvature is
everywhere small, this collocation procedure results in
asmall error at every point. It has been shown that the
growth curves are quite insensitive, even for ¢ < 3¢,
to the choice of the interior collocation point. The
quadratic term in equation (28) is small for these fast-
growing bubbles, and represents a deviation from
linearity for the short times prior to departure. At still
higher pressures, this term would become quite im-
portant. We have assumed one-dimensional flow under
the bubble, which seems reasonable in view of the short
contact times. A more serious assumption is implied
in the neglect of liquid superheat prior to bubble

growth. These results may be somewhat low, therefore,
although the comparison with the results of Theofanous
et al.[9] indicates that this correction should be small.

The general conclusions from this work point to the
predominant effects of the liquid microlayer and of the
flattening of the bubble in determining bubble growth
rates and departure times in liquid-metal pool boiling.
The vapor superheat is only a few degrees, so that the
condensation heat flux effects are relatively minor in the
heat flux and pressure range tested. For the same
reason, the effects of inert gas, as shown by the effective
accommodation coefficient, are not here very im-
portant, although they would be expected to be very
significant at still lower pressures.
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CROISSANCE D'UNE BULLE SUR LA PAROI CHAUDE
D'UN RESERVOIR PLEIN DE METAL LIQUIDE

Resumé—On présente une ¢étude théorique du développement d'une bulle de vapeur sur une paroi
chauffée d’un réservoir de sodium liquide. L’analyse suppose que la bulle a la forme d’un secteur sphérique
A la base duquel un film liquide trés fin est retenu sur la surface chauffante. On a considéré les effets
de la conduction thermique variable dans I'espace et dans le temps & P'intérieur du solide de la vaporisation
du film liquide, et de la condensation en non-équilibre a la surface supérieure de la bulle. Une expression
a deux termes est obtenue pour la vitesse de croissance de la bulle par une méthode de collocation.
Les résultats calculés permettent de prévoir le développement de la bulle sur la surface chauffée en
fonction du flux thermique, de la pression extérieure et des propriétés thermophysiques du liquide et
du solide. On utilise une expression dlie 4 Ruckenstein, modifiée afin de tenir compte de I'angle de contact
effectif, pour déterminer le diametre de la bulle correspondant 4 son décrochement. Cette valeur se trouve
étre surtout sensible a I'angle de contact et moins fortement influencée par le coefficient de trainée de
la bulle. La formation est d’abord controlée par les effets d’inertie, mais les effets de transfert thermique
deviennent importants avant le décrochage. Dans ce domaine de pression (0,1-1atm) la présence de gaz
inertes, en réduisant le coefficient effectif d’accommodation pour la condensation, augmente modérément
la vitesse de développement de la bulle.

DAS ANWACHSEN EINER BLASE AN DER HEIZELACHE EINES
MIT FLUSSIGMETALL GEFULLTEN BEHALTERS

Zusammenfassung—In einer theoretischen Untersuchung wird iiber den Beginn des Blasenwachsens an
einer beheizten Wand eines mit fliissigem Natrium gefiillten Behdlters berichtet. Die Analyse geht aus
voneiner Dampfblase von der Form eines Kugelsektors, an dessen Basis eine diinne, fliissige Mikroschicht
an der Heizfliche haftet. Die Einfliisse der zeit- und ortsabhidngigen Wirmeleitung in der Heizwand,
die Mikroschichtverdampfung und die Kondensation an der Blasenoberfliche werden berticksichtigt.
Dabei ergibt sich ein zweigliedriger Ausdruck fiir die Blasenwachstumsgeschwindigkeit. Das Blasen-
wachstum erweist sich abhdngig vom Warmestrom, vom &uBleren Druck, von den physikalischen
Eigenschaften der Fliissigkeit und der Heizfliche. Zur Bestimmung des Blasen-abreiBdurchmessers wird
ein modifizierter Ausdruck von Ruckenstein herangezogen, der den wirksamen Kontaktwinkel einbezieht.
Dieser Ausdruck erweist sich als abhéngig vom Kontaktwinkel und weniger abhiingig vom Blasennachlauf-
Koeflizienten. Das Wachstum ist anfanglich trigheitsbestimmt, erst vor dem Abreiflen werden Wiarme-
iibergangseinfliisse wirksam. Im untersuchten Druckbereich (0,1 bis 1 bar) werden die Blasenwachstums-
geschwindigkeiten bei Anwesenheit von Inertgas etwas erhoht, da die effektiven Akkomodations-
koeffizienten fiir Kondensation reduziert werden.

POCT T1Y3bIPBKA HA HATPETOI NMOBEPXHOCTHU NMPU KUIMMEHUU
KXKUNAKOTO METAJIJIA B BOJILIIOM OBLEME

Anmoramus — OMMCBLIBACTCA TEOPETHYECKOE HCCNENOBAHNE HA4albHOTO POCTAa My3bIpbKa Mapa
HarpeToit MOBEPXHOCTH CTEHKH NPU KUMEHHU HATpus B Gonbliom obwveme. Tlpeanonaraercs, yro
ny3blpek HMeeT GOpMy ydacTka chepbl, y OCHOBAHHMsSI KOTOPOil HA HArpeTOH MOBEPXHPCTH COXpa-
HAETCA TOHKMR MuKpocnoit kuakoctu. PaccMaTpusatotcs 3ddekThl TENIONPOBOAHOCTH, 3aBHCALLEH
OT BPEMCHH W NPOCTPAHCTBA, B TBEPAOM Tele, HCIAPEHHs] MUKPOCIION XHUOKOCTH U HEpPaBHOBECHOM
KOHICHCALHK HAa BEPXHeH MOBEPXHOCTH Iy3bIpbka. METONOM KOMIOKALMH TONYYEHO IBYXYIEHHOE
BBIPAXXEHHE [N CKOPOCTH POCTA My3bIpbka. PacyeTHble JaHHbIE NIPEACKa3bIBAIOT POCT NMY3BiPbKa Ha
HArpeTol NMOBEPXHOCTH B 3aBHCHMOCTH OT TEIUIOBOTO MOTOKA, BHELUHETO AAB/IEHUS M TEMNOGU3N-
9ECKMX CBOHCTB XUAKOCTM M TBEpAoro Tena. [ns onpeneneHus AHaMeTpa OTpPbIBA My3bIphbKa
MCNoNb3yeTcst Bhipakenue 1o Pykeniwreiiny, MoaudHUHpoBaHHOE OIS yueTa 3dGEKTUBHOrO yria
KoHTakTa. OKka3biBaeTcs, YTO AHAMETP OTPbIBA NMYy3bIPbKa CHIILHO 3aBHCHT OT yIia KOHTakTa M
MEHEE CHJILHO, OT KOdpdHIIHEHTA TOPMOXEHUS Ty3bipbka. BHaamne pocT my3bipbka peryupyercs
HHEPUUOHHBIMU CHJIAMM, HO 10 €r0 OTPbIBA HAYMHAIOT CKa3biBaTheA adidexThl TennoobMeHa. B 3ToMm
nvana3one gasniedudit (0,1-1 aTM) HaNMYMEe MHEPTHOTO ra3a HeCKONBKO MOBbILIAET CKOPOCTh POCTa
My3bIpbka 3a CYET YMEHbLICHUA 3PPexTHBHOIO ko3ddUUMeHTa aKKOMOOAUHMK NpH KOHICHCALHH.
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